Vogelgrippe, Hintergründe, Summary und Links

Diskutiere Vogelgrippe, Hintergründe, Summary und Links im Forum Vogelgrippe / Geflügelpest im Bereich Allgemeine Foren - China beschuldigt, Vogelgrippe-Todesfälle zu verschweigen Die FAZ berichtet von 300 bestätigten Todesfälle und 3000 Menschen in Quarantäne in...
Achso ... ich kann mich erinnern, dass hier auf eine Studie verwiesen wurde, wonach 20 % der streuenden Katzen im Umfeld der wet-markets (Geflügelmärkte in Indonesien) AI Antikörper haben. Woher das wohl kommen mag? Durch WV??
http://www.cdc.gov/eid/content/13/4/pdfs/662.pdf
 
Wie man sieht, sind sogar genetische Untersuchungen interpretierbar.
Der eine schließt daraus, dass die Geflügelindustrie der globale Verbreitungsfaktor ist, der andere sieht aber nur die WV-Sequenzen und unterstellt, dass WV total unnatürliche Flugstrecken fliegen sollen. Stichfest ist das natürlich nur, wenn die Flugroute genetisch sequenziert wird

Genau das habe ich weiter oben versucht deutlich zu machen.

Wobei es allerdings niemandem verboten ist, seinen Verstand zu gebrauchen und sich über Indizien seine Gedanken zu machen. Hierzu gehört die Überlegung, dass Lebewesen, die sich an dem Virus infizieren, und es ausscheiden können, es potentiell auch weiterverbreiten. Diese Überlegung ist auch konsistent mit den Kenntnissen über die Rolle der Vögel in der epidemiologie anderer wichtiger Infektionskrankheiten wie West Nile Virus, St.Louis encephalitis, Lyme Disease, Sindbis alphavirus, Newcastle disease, Chlamydophila psittaci, Anaplasma phagocytophilum, Campylobacter jejuni, Salmonellose, Pasteurella multocida, Mycobacterium avium, Candida, um nur die wichtigsten zu nennen. Aquatische Wildvögel gelten als natürliches Reservoir für Influenza viren. Warum sollte das ausgerechnet beim Influenzavirus vom Typ H5N1 völlig anders sein?


Achso ... ich kann mich erinnern, dass hier auf eine Studie verwiesen wurde, wonach 20 % der streuenden Katzen im Umfeld der wet-markets (Geflügelmärkte in Indonesien) AI Antikörper haben. Woher das wohl kommen mag? Durch WV??

Ich weiss nicht, was hierdurch zum Ausdruck gebracht werden soll. Dass H5N1nur einen Verbreitungsweg hat? Wer behauptet das? Die zitierte Arbeit bezieht sich auf Italien, nicht auf Geflügelmärkte in Indonesien. Dass Katzen sich infizieren und das Virus ausscheiden, ist bekannt. und wird von niemandem bestritten. Möglicherweise kommt ihnen in der Krankheitsausbreitung eine grössere Rolle zu als bisher angenommen. Mit der frage, inwieweit WV Übertrager sind, hat dies nicht viel zu tun.
 
Na, der Link war bei der Meldung im VHGW ... so wichtigh ist der Link auch nicht. Wichtig ist die Aussage, dass das Virus sehrwohl auf wetmarkets kursiert. Die Katzen fangen sich das Virus ja nicht vom heiligen Geist.
 
Zuletzt bearbeitet:
Na, der Link war bei der Meldung im VHGW ... so wichtigh ist der Link auch nicht. Wichtig ist die Aussage, dass das Virus sehrwohl auf wetmarkets kursiert. Die Katzen fangen sich das Virus ja nicht vom heiligen Geist.

Da es offenbar schwer verständlich ist, nochmal:

Ein Verbreitungsweg schließt den anderen nicht aus.

Influenzaviren halten sich sehr wahrscheinlich weder an die Vorgaben von Steiof, noch von Doc Williams oder Redcap.

Die Erkenntnisse über die Infektionen bei Katzen bestätigen lediglich das, was in u.a. anderem in diesem Forum schon zu einem Zeitpunkt thematisiert wurde, als die Medien und das Bvel noch die "von Katzen geht keine Gefahr aus" Story verbreitet haben.

Warum soll eine Übertragung von H5N1 von infiziertem Geflügel oder- produkten auf Katzen nicht möglich sein? Was soll das beweisen?

Um es mal (hoffentlich) unmissverständlich zu formulieren:

1. Für die Katze wird es keinen Unterschied machen, ob der Vogel, den sie gerade gefressen hat , ein Küken aus der benachbarten Farm oder ein infizierter Wildvogel war. Beide Varianten dürften auch in der Praxis eine Rolle spielen.

2. Von der internationalen, industriellen und Backyard Geflügelhaltung geht ein beträchtliches Gefahrpotential hinsichtlich Erregerperpetuierung/evolution und - Verbreitung aus. (Das hat auch nie jemand in Frage gestellt).

3. Auch Wildvögel können infiziert werden, subklinisch erkranken, die Viren ausscheiden und damit verbreiten. Auch Wildvögel spielen in Bezug auf Virusevolution eine Rolle.
So what?

Es hat keinen Sinn, den Kopf in den Sand zu stecken, nur weil man ein paar Hühner hält und Angst vor der Aufstallung hat.

Dass die Aufstallung als Antwort auf die Gefahren ein ungeiegnetes Mittel ist, haben wir oft genug dargestellt.
 
Vielleicht hast Du das überlesen, aber ich hab in diesem Thread und auch sonstwo sehrwohl schon mit Hilfe versch. Texte z.B. von Feare geschrieben, dass die Vögel oder Katzen AI-Viren regional verbreiten können. Dazu ist es aber notwendig, dass es Infektionsquellen von HPAI, wie Geflügelmärkte- abfälle, Fischfarmen usw. gibt. Der Hauptverbreiter in globalen Dimensionen ist also der Mensch.
Außerdem verweisen mehrere Studien darauf, dass HPAI eine Tierpopulation brauchen, die auf engem Raum leben, damit sie z.B. mit dem Kot anderer Tiere in Kontakt kommen, und das Virus wiederholt zirkulieren kann, wie es in Massentierhaltungen üblich ist.
Es ist also sinnlos, in einem Vogelforum auf Vögel oder Hinterhofgeflügel als Sündenbock rumzureiten, obwohl selbst internationale Agenturen es scheinbar geschnallt haben, dass sie sich geirrt haben. Und das immerhin seit einem Jahr.
 
Niemand reitet hier auf irgendetwas herum. Für Polemik besteht keinerlei Anlass.

Außerdem verweisen mehrere Studien darauf, dass HPAI eine Tierpopulation brauchen, die auf engem Raum leben, damit sie z.B. mit dem Kot anderer Tiere in Kontakt kommen, und das Virus wiederholt zirkulieren kann, wie es in Massentierhaltungen üblich ist.

Influenzaviren haben schon lange vor dem Menschen, samt seiner Geflügelzucht, Düngung und allem was sonst noch dazu gehört, existiert sich weitervermehrt und weiterentwickelt. Wieso dies heute anders sein soll und der Menssch hierzu benötigt wird, ist nicht nachvollziehbar.

Dass der Mensch die Virusevolution durch seine aktivitäten massgeblich beeinflusst, und wahrscheinlich die Entstehung der H5N1 strains in ihrer heutigen Form erst ermöglicht hat, bestreitet weltweit niemand ernsthaft. Diese Festrstellung hilft aber nicht viel weiter.

Da, wie schon erwähnt, Viren sich bedauerlicherweise nicht an die Vorstellungen von Steiof, Redcap, internationalen Agenturen oder Geflügelzüchtern halten, ist die Büchse der Pandora geöffnet und dieses Phänomen beschränkt sich eben nicht auf Geflügel, sondern die Story spielt sich auf verschiedenen Ebenen ab, die miteinander in Wechselwirkung stehen und sich gegenseitig beeinflussen, nicht zuletzt deshalb weil es "das Virus" nicht gibt, sondern wir es immer mit einer Palette von, sich ständig weiterentwickelnden Populationen zu tun haben, die sich immer wieder neu anpassen und neu formieren.

Genau hierin liegt der Kern des Problems.

Vielleicht hast Du das überlesen, aber ich hab in diesem Thread und auch sonstwo sehrwohl schon mit Hilfe versch. Texte z.B. von Feare geschrieben, dass die Vögel oder Katzen AI-Viren regional verbreiten können. Dazu ist es aber notwendig, dass es Infektionsquellen von HPAI, wie Geflügelmärkte- abfälle, Fischfarmen usw. gibt. Der Hauptverbreiter in globalen Dimensionen ist also der Mensch.

Das ist schon x mal hier und anderswo durchdiskutiert worden, und wird von niemandem vom Grundsatz her bestritten.

Sorry, dass mir möglicherweise das eine oder andere Elaborat von Redcap entgangen ist.
 
Das liest sich aber so, als ob Dener Meinung nach nur WV Schuld wären.

Tut mir leid, dass ich Dich mit einem weiteren Elalorat enttäuschen muss.

The rise of deadly new diseases such as SARS, Nipah virus and bird flu could be linked to the degradation and destruction of the environment says a new report from the World Health Organization (WHO).

http://news.mongabay.com/2005/1209-who.html
http://www.who.int/globalchange/ecosystems/ecosys.pdf

So neu sind die Erkenntnisse nicht, dass das Machwerk der Menschen weitgehend dafür verantwortlich ist, dass sich unser Ökosystem verändert und damit die Verbreitung von Krankheiten vorangetrieben wird.
Polemik gibt es hier nicht nur von meiner Seite.:zwinker:
 
H5N1 entwickelt sich weiter, verändert sich laufend und führt immer wieder zur Revision eingefahrener Sichtweisen

H5N1 Influenza Continues To Circulate and Change

As the H5N1 viruses continue to expand their range and behave in
unexpected ways, they remain a serious threat to birds and humans

Robert G. Webster, Yi Guan, Malik Peiris, and Honglin Chen

The spread of the highly pathogenic H5N1 influenza virus from eastern Asia to India, Europe, and Africa Traises concern that it will become endemic in wild birds throughout the world. Wild aquatic birds are reservoirs for all 16 subtypes of influenza virus, many of which rarely harm these hosts. However, the H5N1 virus that emerged in southern China in 1996 and then was transmitted to humans readily killed waterfowl in Penfold and Kowloon Parks in Hong Kong. The next H5N1 virusesthatwereisolatedinAsiain2003proved sporadically lethal to waterfowl, but were
100% lethal for poultry such as chicken, quail, and turkey.

Meanwhile, that 1996 avian H5N1 virus split into two distinguishable lineages, one found in Vietnam and Thailand and the other in Indonesia, by early 2004. These new lineages spread mainly through transport of domestic poultry rather than by wild, migratory birds. The second major spread of this H5N1 virus occurred following the emergence of the A/Bar-headed (BH) Goose/Qinghai/65/05 (H5N1) influenza virus in May 2005, whose gene components trace to H5N1 viruses that
were isolated earlier from mallard ducks at Poyang Lake in southwest China. The Poyang Lake viruses contributed gene segments to the Qinghai H5N1 virus that are phylogenetically closely related to H5N1 virusesisolated in domestic poultry (A/Chicken/Shantou/423/03[H5N1]).

Although migratory birds likely account for much of the remarkably rapid spread of H5N1 viruses from Qinghai Lake in western China to Mongolia, Russia, and Turkey, humans also may have helped to spread the virus along rail lines. While the A/BH Goose/Qinghai/65/05 (H5N1) viruses are highly pathogenic to geese, they are nonlethal in mallard ducks. Thus, bar-headed geese can be ruled out as spreading this virus to Europe, whereas ducksremainalikelysuspect,albeitwithout firm proof. Although deaths among swans and geese served as sentinel events for detecting H5N1 in Europe, these two species probably do not distribute H5N1 viruses over great distances.


Changing Patterns of H5N1 Viruses in Birds

The emergence of the highly pathogenic H5N1 influenza viruses in Asia in 1996 and their subsequent transmission to domestic poultry, humans, and other mammals, including felids, is unprecedented in the recorded history of influenza. These viruses continue to change. Remarkably, their unfolding story appears to violate ecological principles that were established for other influenza viruses during the past 30 years.

The newer viruses appear to spread readily as aerosols among birds, unlike influenza viruses that ci 2002(Fig.2).Thus,based on 23 different H5N1 viruses in mallard ducks, the amount of virus excreted orally increased by a factor of 10 after 2002. These newer viruses replicate to higher titers in the upper respiratory tract than in the gastrointestinal tracts of their host ducks.

Although these strains of H5N1 will still be transmitted primarily through water in nature, they likely will be transmitted primarily by the respiratory route within facilities such as poultry markets. To track outbreaks, investigators will need to collect oral, tracheal, and water trough samples as well as cloacal/fecal samples.

Before 2002, all 16 subtypes of nonpathogenic influenza viruses and the vast majority of highly pathogenic H5 and H7 influenza viruses caused no disease signs in waterfowl.However,the current H5N1 viruses are overturning this concept. Although not uniformly pathogenic, the lethality of the post-2002 H5N1 viruses varies with the specific virus and species andageofwaterfowl.Thus,some H5N1 isolates are 100% lethal to mallardducks,whereas others are not, enabling some ducks to spread H5N1. Because mallard ducks can shed nonlethal H5N1 viruses for up to 20 days, nonpathogenic variants likely have aselective advantage in these ducks.
Probablythefirstrecordedincident of influenza virus moving from wild birds directly to humans occurred in Azerbaijan in

H5N1 Viruses Move from Birds to Cats and to Other Species The post-2001 H5N1 influenza strains also infect,aretransmittedamong,andkilltigers,leopards, and other felids, including domestic cats.

The first noted outbreaks occurred at zoos in Thailand when tigers and leopards were fed infected chickens. Domestic cats were first reported to be infected near Bangkok, Thailand, in February 2004,when 14 of 15 cats died after one of them ate an infected chicken carcass. Although the virus can replicate outside the respiratory tract, titersarehighestinlungs.Thevirusalsoinfected domestic cats in Iraq, Indonesia, and Germany that consumed infected wild birds. H5N1 vi-ruses apparently also infected masked palm civets (Paguna larvata) in Vietnam, a dog in Thai-land, and a stone marten (Mustelidae family) in Germany.

Although H5N1 viruses are poorly transmitted from poultry to humans, the viruses move freely from poultry to cats and then among cats—raising the possibility that cats will serve as an intermediate host that promotes transmission to humans and transmission from human to human.

Stability and Environmental Sources of Influenza Viruses

Another important property of avian influenza viruses is their remarkable stability in aqueous suspension. Many subtypes retain their infectivity for more than 100 days at 28°C when the 6 initial concentration is 10 TCID50. Although the infectivity of the 1997 Hong Kong H5N1 virus lasted only 2 days at 37°C, aqueous suspensions of post 2001 H5N1 viruses remain infectivefor 4 to 6 days at 37°C. Other H5N1 variants circulating in Eurasia are also environmentally stable, providing additional opportunities for these viruses to
transmit to people and poultry through untreated water.
Investigatorsformerlybelievedthatinfluenza viruses are transmitted unidirectionally from wild migratory birds to domestic species. However, the A/BH Goose/Qinghai/65/05 (H5N1) virus is areassortantthatobtaineditsM,NS,PA,

PB1, and PB2 gene segments from A/Mallard duck/Jiangxi/1653/05 (H5N1) and it’s HA, NA, and NP segments from A/Mallard duck/Jiangxi/2136/05 (H5N1). In both cases, domestic ducks infected mallards that were over-wintering in southernChina.

Thus, the A/BH Goose/Qinghai/65/05 (H5N1) virus apparently contains gene segments from influenza viruses in domestic birds, along with gene segments that were spread in part by migratory birds. The A/BH Goose/Qinghai/65/05 (H5N1) virus contains lysine at residue 627 of PB2, which is associated with pathogenicity in mammals. Did the selection of the PB2 lysine 627 variant occur in mammals in China?
Since 2001, investigators report finding H5N1 infecting passerine birds, some of which were

killed during the 2002–2003 outbreak in Hong Kong.Similarly,H5N1 viruses were isolated from dead crows near affected chicken farms in Japan.

Early in 2006, H5N1 influenza viruses were isolated from dead crested mynahs, common magpies,oriental magpie robins,and Japanese white-eyes in the New Territories of Hong Kong. At times, passerine birds seemed to be falling from the sky. These events received limited attention perhaps because they were taken to reflect infections in domestic poultry rather than establishment of H5N1 viruses in wild passerine populations. Although infections in domestic poultry were the probable source of these H5N1 viruses, passerine birds doubtless contribute to the spread of H5N1 viruses in nearby domestic poultry flocks and among cats.

One Strategy for Controlling H5N1 Viruses Entails Eradicating Source Animals

Options for controlling influenza viruses include eradicating source animals, vaccinating animals that might become infected, and using antivirals. Here we consider eradication, vaccination,and combinations of those two approaches.

Developed countries typically eradicate domestic poultry flocks to control highly pathogenic (HP) avian influenza. Historically, several countries in the Americas and in Eurasia controlled HP H5 and H7 viruses by quarantine and culling flocks, introducing improved biosecurity,and then compensating growers.Forexample, this approach was used to rid H7N7 from Dutch poultry in 2004, H5N2 from Pennsylvania poultry in the 1980s, and H7N3 from Canada in 2003.Similar approaches were leveled on H5N1 in Japan and South Korea after 2003 and in Thailand in 2005.

Such measures are costly in affluent countries. Although such countries can afford to eradicate highly pathogenic H5N1 influenza viruses by culling poultry, this option would impose too great a burden in developing countries, where backyard poultry is an important source of protein. Not only do eradication efforts have devastating economic and nutritional impacts, villagers are also reluctant to report outbreaks of infections in poultry.

Furthermore, while culling approaches may prove successful when domestic poultry flocks are targeted, this strategy is not workable when dealing with viruses that are circulating in wildbird reservoirs.Thus,recognizing that influenza is not truly an eradicable disease, influenza experts continue to be concerned that H5N1 viruses in Eurasia are becoming established in migratory birds. For instance, the H5N1 virus was reintroduced into domestic poultry in Thailand in July 2006 not long after it was supposedly eradicated there. Hence, once a particular influenza virus becomes widespread within a region,vaccine use becomes a nessential component of control measures.

Controlling H5N1 Influenza also Entails Vaccinating Animals

Despite the need for vaccines to control H5N1 influenza viruses at the source, there are concerns over selecting antigenic variants and producing effective vaccines, on relying on those vaccines without improving other biosecurity measures, and on choosing specific means for deploying vaccines. Amid these concerns, there is an ongoing need to produce high-quality, inexpensive, standardized poultry vaccines for use in aquatic birds such as ducks and geese as well as in commercial poultry, including chickens, quail, pheasants, and guinea fowl. Reverse genetics strategies make design of such vaccines possible. Meanwhile, both inactivated highgrowth, whole-virus oil emulsion vaccine and live-attenuated recombinant vaccines expressing the H5HA infowlpox or Newcastle disease virus are being evaluated.

One control approach calls for deploying vaccines in conjunction with quarantines to control the outbreak, and planning at the outset to discontinue vaccine use once the virus is controlled. Part of this strategy entails using analytic^methods to discriminate infected from vaccinated birds. This approach successfully controlled an outbreak during 2003 of H7N2 viruses in layer chicken farms in Connecticut. Stringent biosecurity measures were implemented after vaccine use was discontinued.

Another approach calls for continuing use of vaccines to control disease and virus spread. Discontinuing vaccine use does not appear to be an option if a highly pathogenic H5N1 virus becomes endemic in a particular region. Thus,vaccinations have continued in Hong Kong and at poultry farms in southern China that provide chickens to Hong Kong markets since 2004,with monitoring of unvaccinated chickens in

poultry houses to ensure that the vaccines prevent virus spread. Although this strategy prevented reintroduction of H5N1 virus into Hong Kong from legitimate imports,the virus came in via smuggled chickens and, by February 2006,infected wild waterfowl and passerine birds. These events led officials to ban backyard poultry in Hong Kong, enforced with a heavy monetary fine.

Despite improved methods for designing and making influenza vaccines for humans and poultry(mainlychickens),domestic ducks and geese, which are reservoir species, also need to be vaccinated. For instance, in 2004 and 2005, H5N1 virus was isolated from about 2% of apparently healthy geese and ducks every month in southern Chinese poultry markets.

The favored policy for controlling H5N1 influenza in China is to vaccinate all poultry. Despite residual H5N1 virus shedding from apparently healthy poultry flocks, the inoculated birds apparently are protected against disease,if not against viral replication. Failure to standardize the antigen content of agricultural vaccines is of continuing concern, and substandard agricultural vaccines are a continuing problem. As part of an ongoing nationwide effort, officials in Vietnam began using vaccines to control H5N1 influenza in poultry in October 2005, deploying two rounds to vaccinate 170 million chickens and 79 million ducks in 64 provinces. Notably,sincemid-November2005,no cases of H5N1 infection in humans or chickens were reported from Vietnam, whereas earlier there were 93 human cases with 42 deaths. Surveillance reports also indicate no detectable H5N1 viruses in chickens but infections of ducks and geese. Although encouraging, further surveillance is needed, and monitoring of sentinel unvaccinated chickens is warranted. A recent report from Vietnam of H5N1 in ducks and in smuggled poultry indicates the continued presence of the virus.

Several Key Questions Linger

Certainly there will be another influenza pandemic, but whether H5N1, H2, H9, H7, or another influenza virus will acquire this potential remains unknown. However, H5N1 viruses are continuing to expand their range,to change, and to behave in unexpected ways (see p. 552). Thus, it would be a fundamental mistake to become complacent about H5N1. More than half of 256 persons infected with H5N1 died,and efforts to control the spread of this virusled to culling of more than 200 million domestic poultry.

The flyways of migratory birds overlap in Alaska, making it possible that infected birds from Eurasia will introduce H5N1 into the Americas. However, phylogenetic records show that influenza viruses in wild birds are separated into two distinct American and Eurasian clades. These differences suggest that the viruses and birds do not mix as often as we might expect (Fig. 3). Why not? The current intense virus surveillance of migratory birds may provide insights into whether the flyways truly overlap and how frequently such birds exchange influenza viruses.

After narcotics, the most common items smuggled into the U.S. are live birds for the pet trade. Thus, birds carrying Asian H5N1 viruses may be smuggled into the Americas, or frozen domestic birds may be illegally imported from Asia. For instance, 1,600 pounds of frozen ducks, geese, and chickens were recently imported from China into Troy, Mich., without the possibility of an H5N1-infected human bringing this virus into the Americas.

Other highly pathogenic H5 and H7 influenza strains did not become established in wild birds. However, the new H5N1 virus appears to be breaking other rules by replicating harmlessly in some species while killing others. However, early in 2006,birds that migrated from Africa to Europe did not carry detectable H5N1 virus despite that virus being found among domestic poultry in Nigeria, Niger, and elsewhere in Africa. Will migratory birds become infected in Europe later during 2006 and then bring the virus back to Africa?
The situation in north-central Asia and Siberia is of continuing concern; the die-off of barheaded geese in 2005 and the recent die-off of more than 4,000 crested grebes (Podiceps cristatus) in June 2006 on the Mongolian-Russian border suggests that the HPH5N1 virus is in the Siberian breeding grounds of migratory waterfowl. A continuing controversy is whether the wild migratory birds in western Asia are the source of continuing outbreaks in domestic poultry or vice versa. Agricultural authorities blame the wild birds, while wildlife biologists blame the domestic poultry.

Prospective virological and serological influenza virus surveillance in Laos failed to detect H5N1 virus in 2005, despite sampling more than 6,000 domestic ducks,chickens,and quail. Thus, although H5N1 virus caused lethal outbreaks in several provinces, it was not established within domestic poultry flocks.However,
recent surveillance in the Lao People’s Democratic Republic indicated that a phylogenetically distinguishable H5N1 virus was introduced early in 2006 and for a second time in July. Because there was no migratory bird activity at those times,the most likely source was imported domestic poultry.

The expanded geographical range of H5N1 influenza viruses through much of Eurasia and its presence in Africa along with HIV infections provide an opportunity for continuing evolution and transmission in human populations that are immunologically compromised. Although the H5N1 virus has been circulating now for a decade in poultry with occasional transmissions to humans, we believe that it would be premature to be come complacent regarding the potential of this virus to transmit in humans. The apparent increase in the number of family clusters of H5N1 in Indonesia is of continuing concern. The key unanswered questions include:

• Will H5N1 acquire consistent human-to-human transmissibility and cause a pandemic?
• How soon will H5N1 spread from Asia to the Americas?
• Will H5N1 become endemic in wild bird reservoirs?

These viruses kill more than 50% of humans that they infect.One such virus infected a family cluster of eight persons in Indonesia, and included three sequential human-to-human transmissions. Fortunately, however, that particular cluster did not expand. Moreover, in humans, the H5N1 viruses remain poorly transmissible between individuals. In over 40 years of experience with influenza,the Asian H5N1 is the most virulent virus I have encountered (R.G.W.); if it does acquire consistent human-to-human transmissibility—it will likely be catastrophic.

SUGGESTED READING
Chen,H.,G.J.Smith,K.S.Li,J.Wang,X.H.Fan,J.M.Rayner,D.Vijaykrishna,J.X.Zhang,L.J.Zhang,C.T.Guo,C.L.
Cheung,K.M.Xu,L.Duan,K.Huang,K.Qin,Y.H.Leung,W.L.Wu,H.R.Lu,Y.Chen,N.S.Xia,T.S.Naipospos,K.Y.
Yuen, S. S. Hassan, S. Bahri, T. D. Nguyen, R. G. Webster, J. S. Peiris, and Y. Guan. 2006. Establishment of multiple
sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc. Natl. Acad. Sci. USA 103:2845–2850.
(Epub 10 February 2006.)
Kuiken,T.,G.Rimmelzwaan,D.vanRiel,G.vanAmerongen,M.Baars,R.Fouchier,andA.Osterhaus.2004.AvianH5N1
influenza in cats. Science 306:241. (Epub 2 September 2004.)
Maines, T. R., L. M. Chen, Y. Matsuoka, H. Chen, T. Rowe, J. Ortin, A. Falcon, N. T. Hien, Q. Mai le, E. R. Sedyaningsih,
S. Harun, T. M. Tumpey, R. O. Donis, N. J. Cox, K. Subbarao, and J. M. Katz. 2006. Lack of transmission of H5N1
avian-human reassortant influenza viruses in a ferret model. Proc. Natl. Acad. Sci. USA 103:12121–12126. (Epub 31 July
2006.)
Olsen. B., V. J. Munster, A. Wallensten, J. Waldenstrom, A. D. Osterhaus, and R. A. Fouchier. 2006. Global patterns of
influenza a virus in wild birds. Science 312:384–388.
Palese, P., T. M. Tumpey, and A. Garcia-Sastre. 2006. What can we learn from reconstructing the extinct 1918 pandemic
influenza virus? Immunity 24:121–124.
Russell, C. J., and R. G. Webster. 2005. The genesis of a pandemic influenza virus. Cell 123:368–371.
Shinya,K.,M.Edina,S.Yamada,M.Ono,N.Kasai,andY.Kawaoka.2006.Avianflu:influenzavirusreceptorsinthehuman
airway. Nature 440:435–436.
Taubenberger, J. K., and D. M. Morens. 2006. 1918 Influenza: the mother of all pandemics. Emerg. Infect. Dis. 12:15–22.
Wong, S. S. Y., and K. Y. Yuen. 2006. Avian influenza virus infections in humans. Chest 121:156–168.
http://www.asm.org/ASM/files/ccLibraryFiles/Filename/000000002704/znw01206000559.pdf
 
The Welsh health authorities said that in all but one of the four human cases the virus had spread from poultry. The other case may have been transmitted from person to person.

Der Fall in England belegt eine Mensch zu Mensch Übertragung durch den H7N2 Virus. Bisher wurde bei 4 Personen eine Infektion nachgewiesen, die WHO nimmt die Möglichkeit einer Mensch zu Mensch Übertragung ernst. Bisher wies niemand ernsthafte Sympome auf, man wird aber abwarten müssen, wieviele Erkrankungen auftreten.

Bereits im letzten Jahr war es zu einem H7N3 Ausbruch in England gekommen, auch damals wurden einige Menschen infiziert. Das HA ethielt die RBD nahe Mutation M231I. Diese könnte eine Humanadaptation darstellen, immerhin ist sie typisch für H1N1, H3N2 und auch Influenza B viren. Die in H7N3 enthaltene M231I Mutation wurde auch in H5N1 Ausbrüchen bei Geflügel und bei einem Patienten in Ägypten nachgewiesen.

Ein anderer Fall von M231I war 2006 bei einer in Deutschland aufgefundenen Eule festgestellt worden, eine Sequenz, die mehrfach auch in Ägypten bei -teilweise tödlich verlaufenden H5N1 Infektionen nachgewiesen wurde.

Das gleichzeitige Auftreten von H7N3 und H5N1 vergrößert deutlich die Gefahr weiterer Mutationen mit Gefährdungspotential.

H7 viren spielten schon vor einigen Jahren bei einem Ausbruch in Holland eine Rolle, damals war es zu einem dramatischen Todesfall gekommen, und serologisch konnte eine Weiterverbreitung auf mehr als 1000 Personen wahrscheinlich gemacht werden, wenn die Infektionen auch weitgehend inapperent verliefen.
 
MAbs sind zwar hochwirksam, aber sehr teuer und aufwändig in der Herstellung. Ein Massenschutz mit human mAbs wird damit nicht realisierbar sein.
 
31 May 2007 11:10:27 GMT
Source: Reuters
Alert Me | Printable view | Email this article | RSS [-] Text [+]

Background
Bird flu
More May 31 (Reuters) - The World Health Organisation (WHO) confirmed on its Web site on Thursday that a 45-year-old Indonesian man from Central Java province has died of bird flu.

Of the 98 cases confirmed to date in Indonesia, 78 have been fatal. Worldwide, the virus has killed 187 people since 2003, according to the WHO.

At least 200 million birds have died or been culled.

Following is a list of confirmed human cases of H5N1. Total cases include survivors.

Deaths Total cases AZERBAIJAN 5 8 CAMBODIA 7 7 CHINA 15 25 DJIBOUTI 0 1 EGYPT 14 34 INDONESIA 78 98 IRAQ 2 3 LAOS 2 2 NIGERIA 1 1 THAILAND 17 25 TURKEY 4 12 VIETNAM 42 93 ------------------------------------------------- TOTAL 187 309 -------------------------------------------------

Initial tests usually take a day or two to confirm if someone has H5N1. More detailed testing by government laboratories or those affiliated with the WHO can take a week or more.

The H5N1 virus remains mainly a virus of birds, but experts fear it could change into a form easily transmitted from person to person and sweep the world, killing millions.

So far, most human cases can be traced to direct or indirect contact with infected birds.
 
Neuer Test erlaubt Schnelldiagnose von zahlreichen Microorganismen

Bruker Daltonics And Isis Pharmaceuticals Enter Into Manufacturing And Distribution Agreement For Ibis T5000 Biosensor System
Main Category: Medical Devices News
Article Date: 01 Aug 2006 - 0:00 PDT
| email to a friend | printer friendly | view or write opinions | Article Also Appears In
Infectious Diseases / Bacteria / Viruses

http://www.medicalnewstoday.com/medicalnews.php?newsid=48408




Bruker Daltonics, a subsidiary of Bruker BioSciences (Nasdaq: BRKR), and Isis Pharmaceuticals (Nasdaq: ISIS) announce today a strategic alliance for manufacturing and distribution of Isis' Ibis T5000(TM) biosensor system. The Ibis T5000, developed by Isis' Ibis Biosciences(TM) division, is a universal biosensor system that can simultaneously identify thousands of types of infectious organisms in a sample, without needing to know beforehand what might be present in the sample.

In this strategic alliance, Bruker Daltonics will be the exclusive worldwide manufacturer of the Ibis T5000 biosensor system, which incorporates Bruker Daltonics' micrOTOF(TM) ESI-TOF mass spectrometer. Bruker Daltonics will also be responsible for order processing, system installations and service in North America, Europe and the Middle East. In Europe and the Middle East, Bruker Daltonics will have exclusive rights to sell Ibis T5000 systems and Ibis infectious organism identification kits for various government applications, and non-exclusive rights to sell to all other customers, including clinical, pharmaceutical and academic researchers for all other applications except diagnostics. Outside of Bruker Daltonics' exclusive market, Isis may sell Ibis T5000s and its infectious organism identification kits.

The Ibis T5000 utilizes the Triangulation Identification for the Genetic Evaluation of Risks (T.I.G.E.R.) methodology, which is a combination of genomics, mathematical modeling, mass spectrometry and molecular amplification, to generate a "fingerprint" of each bacterium or virus, allowing it to identify virtually any bacteria or virus present in a sample. In addition, the Ibis T5000 biosensor system can rapidly identify or classify organisms that are newly-emerging, genetically altered or unculturable. The Ibis T5000 biosensor works with many different types of infectious samples from human samples, such as throat swabs or sputum, to environmental samples, such as soil or air. The Ibis T5000 is currently designated for Research Use Only (RUO) and has not been approved for any regulated uses, including in vitro diagnostics.

"Utilizing our mass spectrometry instrumentation, the Ibis division at Isis Pharmaceuticals has pioneered a universal biosensor system that with the appropriate reagents and databases has the potential to meet unmet infectious disease identification needs both in the government and in important clinical and pharmaceutical research markets," said Frank Laukien, President of Bruker Daltonics. "The Ibis T5000 system can identify or classify and quantify a broad range of pathogens, and also can yield details on strain type and drug resistance. In the future, this additional information can potentially support rapid, informed responses, for instance, in monitoring infectious disease outbreaks or in identifying the sources of hospital-acquired infections. Our strategic alliance will allow Ibis to take advantage of our instrument manufacturing capabilities, global distribution channels and service network, while we benefit from Ibis' technology expertise and the outstanding capabilities of the Ibis T5000 biosensor system."

"This alliance is a major milestone in commercializing our Ibis T5000 biosensor system. We have been working with Bruker Daltonics for over nine years and as the relationship has evolved, Bruker was an obvious partner for the manufacturing, distribution and service of the Ibis T5000 biosensor system," said Michael Treble, President of the Ibis Biosciences division and Vice President of Isis Pharmaceuticals. "Combining Bruker Daltonics' worldwide presence and instrument manufacturing expertise with our proprietary infectious disease identification technology is a key component of our commercialization strategy for the Ibis T5000 system. We anticipate that this relationship will immediately help us with this year's planned commercialization to our early-access customers, and overall we expect that working with Bruker Daltonics will expand the reach of the Ibis T5000 biosensor system within the U.S. and overseas markets for various government and medical research applications."

Wissenschaftliches tutorial: http://www.ibisbiosciences.com/tutorial_02a.html
 
Zuletzt bearbeitet:
MAbs sind zwar hochwirksam, aber sehr teuer und aufwändig in der Herstellung. Ein Massenschutz mit human mAbs wird damit nicht realisierbar sein.


wie teuer etwa ? Ich las, dass das Verfahren oder die Antikoerper jetzt "patentiert" werden soll. Ob man Viren oder Antikoerper
patentieren kann ?
MAbs = monoclonal anti-bodies ?
 
MABs kann man auf jeden Fall patentieren, da es da ja vor allem auf den HErstellungsprozess ankommt. Und der ist ziemlich kompliziert. Meist werden Hybride gebildet. Der Grossteil des Moleküls ist human, und nur ein möglichst kleiner, aktiver Anteil im Fab Bereich ist allogen, meist von der Maus.

Zu den Yolk AGs siehe hier
 
Zum Preis: Verallgemeinern kann man nicht. Der MAB "Rituximab" ein Anti CD 20 MAB kostet etwa 3300 € Je 700 g, was etwa eine Tagesdosis ist.

Bevacizumab ein Krebsmittel, liegt bei ca 1587.
Alemtuzumab liegt bei 1734 €. alle angaben Kosten pro Verabreichung.
 
danke.

in der Pandemie steigen dann wahrscheinlich die Preise...

Wenn man entsprechend viele davon herstellt wird's aber vermutlich
billiger zu machen sein.
Trotzdem 10-100 mal teurer als Tamiflu oder Impfstoff,
also kein Hindernis fuer weitere Forschung bei antiviralen Mitteln
oder Impfstoffen.
 
Thema: Vogelgrippe, Hintergründe, Summary und Links

Ähnliche Themen

harpyja
Antworten
14
Aufrufe
5.584
Hoppelpoppel006
Hoppelpoppel006
S
Antworten
7
Aufrufe
2.527
Sietha
Sietha
C
Antworten
7
Aufrufe
1.079
finchNoa@Barbie
F
Zurück
Oben