Biomonitoring, Surveillance, Summary

Diskutiere Biomonitoring, Surveillance, Summary im Forum Vogelgrippe / Geflügelpest im Bereich Allgemeine Foren - HPAI Preparedness and Communication Plan APPENDIX 10. Surveillance for Highly Pathogenic Avian Influenza Subtype H5N Five strategies for...
G

Gänseerpel

Guest
HPAI Preparedness and Communication Plan
APPENDIX 10. Surveillance for Highly Pathogenic Avian Influenza Subtype H5N

Five strategies for collecting monitoring and surveillance data on Asian H5N1 virus in wild birds have been suggested (See An Early Detection System for Asian H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds—U.S. Interagency Strategic Plan). The NPS is implementing investigation of morbidity and mortality events, at minimum. Determination of necessity for implementation of other surveillance strategies may be made on a site-specific basis.

Investigation of Morbidity/Mortality Events
Over 40 species of wild birds have been shown to be susceptible to infection with Asian H5N1 virus. While not all species infected necessarily exhibit disease, the current strain(s) of H5N1 circulating in Asia have been shown to cause morbidity and mortality in a wide variety of these species. The systematic investigation of morbidity and mortality events in wild birds to determine if Asian H5N1 is playing a role in causing illness and death offers the highest and earliest probability of detecting the virus if it is introduced by migratory birds into the United States. State natural resource agencies and Federal refuges and parks, primarily within the DOI’s U.S. Fish and Wildlife Service National Wildlife Refuge System and the National Park Service, are the principal authorities in a position to detect and respond to mortality events involving wild birds. Morbidity and mortality events involving wildlife are often detected by, or reported to, these agencies and entities. This strategy capitalizes on an existing morbidity/mortality program being conducted by DOI and its partners.

Surveillance in Live Wild Birds
This strategy incorporates sampling of live-captured, apparently healthy wild birds to detect the presence of Asian H5N1 virus. This effort will select bird species in North America that represent the highest risk of being exposed to, or infected with, Asian H5N1 virus because of their migratory movement patterns, which include birds that migrate directly between Asia and North America, or birds that may be in contact with species from areas in Asia with reported outbreaks. Should Asian H5N1 virus be detected in domestic birds in the U.S., sampling of wild birds in the flyway in the affected area may become a high priority as well. Data collected by organizations currently conducting research and monitoring for avian influenza in Alaska will be incorporated with additional bird captures as necessary to provide a broad species and geographic surveillance effort. This strategy capitalizes on research activities currently being conducted by DOI, USDA and their partners.

Surveillance in Hunter-killed Birds
Check stations for waterfowl hunting are operated by the US Fish and Wildlife Service and state natural resource agencies. Hunter check stations provide an opportunity to collect additional samples to determine the presence of HPAI and other subtypes of avian influenza viruses and supplement data collected during surveillance of live wild birds. As with surveillance of live wild birds, sampling of hunter-killed birds will focus on hunted species that are most likely to be exposed to HPAI in Asia; have relatively direct migratory pathways from those areas to the U.S. via Alaska or directly to the Pacific Coast; mix in Alaska staging areas with species that could bring the virus from Asia; or should HPAI be detected in domestic birds in the U.S., may mix with wild birds in the flyway of the affected area. Collection of samples from these species will occur at hunter check stations in the lower 48 states during hunting seasons in areas where these birds stage during migration or over-wintering.

Sentinel Species
Waterfowl, exhibition gamefowl, and poultry flocks reared on backyard premises have been used as sentinels for active surveillance for avian diseases of interest to the commercial poultry industry and regulatory agencies. Currently in Alaska, the State veterinarian uses targeted surveillance of domestic flocks at concentration points due to remote location of villages and lack of resources; enthusiasts travel to poultry exhibitions with birds from distant locations; and surveillance effectively covers a large geographic area. Enhancement of this approach would be valuable. However, placement of sentinel ducks in strategic locations may also prove useful. Placement of sentinel ducks has been used successfully for surveillance of diseases of importance to the poultry industry, including influenza A. Also, sentinel ducks in wild pelagic bird colonies improved virus detection rates fivefold, suggesting that this approach is advantageous in ecological studies.

Environmental Sampling
Avian influenza viruses are generally released by waterfowl through the intestinal tract and viable virus can be detected in both feces and the water in which the birds swim, defecate and feed. This is the principal means of virus spread to new avian hosts and potentially to poultry, other livestock, and humans. Analysis of both water and fecal material from waterfowl habitat can provide evidence of AI circulating in wild bird populations, the specific AI subtypes, levels of pathogenicity, and possible risks to humans and livestock. Monitoring of water and/or fecal samples gathered from waterfowl habitat is a reasonably cost effective, technologically achievable means to assess risks to humans and poultry

http://www.nps.gov/public_health/intra/ai/docs/Wild_App10.pdf

siehe auch:
http://www.usda.gov/documents/wildbirdstrategicplanpdf_seg0.pdf
 
Sample Collection
Samples collected for AI surveillance may include carcasses, tracheal and cloacal swabs, feces,
and environmental samples (e.g., water). Prior to initiating a surveillance activity, it is important
to identify the laboratory in which the samples will be submitted. Sample handling and
transportation procedures may differ among laboratories. It is recommended that samples
collected for inclusion into the National Early Detection System be submitted to a laboratory that
uses standardized procedures identified in the Laboratory Diagnosis section of this document or
by using the attached detailed descriptions of sampling methodologies.
If birds are found morbid or dead, it is important to use proper personal protection techniques
(http://www.nwhc.usgs.gov/publications/wildlife_health_bulletins/WHB_05_03.jsp,
http://www.cdc.gov/flu/avian/professional/protect-guid.htm) and to submit the entire carcass to a
veterinary diagnostic laboratory for necropsy (Attachment 8). Field biologists should contact the
specific laboratory that they will be working with well in advance of any specimen collection
and shipping to receive specific instructions for specimen submissions to that laboratory.
Laboratories should always be notified ahead of time when a shipment is being made to their
facility.
When collecting samples from live or hunter-killed birds, tracheal and cloacal swabs are
preferred. Most AI strains tend to replicate more efficiently in the intestinal tract than in the
respiratory tract of natural host species (i.e., waterfowl and shorebirds). Consequently, cloacal
swabs are generally preferred. However, recent isolations of highly pathogenic H5N1 avian
influenza virus in wild birds have documented higher levels of virus in tracheal samples.
Therefore, it is recommended that both samples be collected from birds when possible. While
the collection of cloacal swabs is a relatively easy procedure, obtaining proper tracheal swabs
can be problematic and requires personnel trained in the sampling technique. Examples of
tracheal/cloacal swab collection protocols can be found in Attachment 9. Tracheal and cloacal
swabs should be placed in separate tubes, and swabs should not be pooled across individuals.
Monitoring of water and/or fecal samples gathered from waterfowl habitat is a reasonably cost
effective, technologically achievable means to detect the presence of HPAI and alert decision

Sample Size Determination
Prior to initiating a surveillance program, it is important to determine the sample size necessary
to make statistically valid inferences concerning the presence of highly pathogenic H5N1 avian
influenza virus in a sample population. In the context of this plan, the population of interest is
not defined because this definition will vary by geographic location, time of year, species of
interest, and sampling method employed. For example, sampling a breeding population versus a
wintering population, for a single species, may result in very different interpretations of the
geographic distribution of the population of interest. If water samples are being collected, then
the population may consist of several water bodies. Therefore, it is crucial that prior to
collections beginning, statistically valid sample size estimations be incorporated into regional
and state implementation plans.
makers to the risks to poultry in the Western Hemisphere from new, potentially highly
pathogenic subtypes of AI (Attachment 7). A surveillance system based on water sampling is
not ready to implement at the present. However, the validation of this method could come on3/
14/06
8
line in a short period of time and would represent considerable cost savings without loss of
sensitivity. Fecal sampling is an established technique and is ready for use in surveillance with
the establishment of sampling guidelines. Both approaches yield advantages where individual
bird sampling is too costly or logistically impractical. Either approach could yield a spatial and
habitat risk assessment for site contamination with highly pathogenic H5N1 avian influenza
virus. The main considerations are where and when to get the samples, ensuring proper storage
and transport, and the capacities and capabilities of the laboratories doing the analyses. Realtime
reporting and the infrastructure to support such reporting is a serious constraint on any
surveillance system. The ability to integrate, analyze, and responsibly disseminate these data is
critical and needs to be addressed.
 
Laboratory Diagnostics
All samples collected for inclusion in the National Early Detection System should be analyzed in
accordance with the standard procedures included in this document. A list of laboratories
certified to conduct testing for highly pathogenic H5N1 avian influenza virus is included in
Attachment 11. Samples will be analyzed as soon as possible after collection. Tracheal/cloacal
swabs and fecal samples will be analyzed by real-time reverse transcriptase-polymerase chain
reaction (RT-PCR) using the matrix gene RT-PCR assay (Attachment 12). The matrix gene RTPCR
assay is capable of detecting all 16 hemagglutinin and nine neuraminidase subtypes. Matrix
gene RT-PCR-positive samples would indicate the presence of avian influenza and they should
be further characterized by the H5- and H7-specific RT-PCR assays of Spackman et al. (2002) as
modified in Attachment 11. The H5 RT-PCR test is known to detect the current Highly
pathogenic H5N1 avian influenza viruses.
Positive H5 and H7 RT-PCR tests would indicate the presence of AI viruses with the potential of
causing pathology in domestic poultry. Therefore, all samples positive for H5 and H7 by RTPCR
will be submitted for virus isolation for verification. Samples positive for live virus in virus
isolation and positive for H5 or H7 by RT-PCR will be submitted to the USDA APHIS National
Veterinary Services Laboratory (NVSL) for confirmation. The NVSL is capable of performing
the intracranial chicken pathogenicity index (ICPI) test on the resultant virus to determine
directly the pathogenicity of the virus in chickens. Identification of a highly pathogenic H5 or
H7 virus is a reportable disease and immediate notification to the agency submitting the sample,
3/14/06
9
the state veterinarian, the area veterinarian in charge (AVIC), the state public health official and
the CDC/USDA Select Agent program. Samples will be immediately secured as required by the
Select Agent Programs.
All positive H5 and H7 samples will also be sent to the USDA Agriculture Research Service
Southeastern Poultry Research Laboratory in Athens, GA, for complete molecular sequencing.
This will provide for complete typing of the virus and allow for phylogenetic analysis.
 
Super-Sentinel Chickens and Detection of low-Pathogenicity Influenza Virus

Philip I. Marcus,* Theodore Girshick,† Louis van der Heide,* and Margaret J. Sekellick*
*University of Connecticut, Storrs, Connecticut, USA; and †Charles River Specific Pathogen Free Avian Supplies,
Storrs, Connecticut, USA
Chicken interferon-α administered perorally in drinking water acts on the oropharyngeal mucosal system
as an adjuvant that causes chickens to rapidly seroconvert after natural infection by low-pathogenicity
Influenza virus. These chickens, termed super sentinels, can serve as sensitive early detectors of
clinically inapparent infections.
Early detection of low-pathogenicity type A influenza virus (LPAI) circulating among
chickens is important for 3 reasons: 1) these are the most prevalent strains in nature and can
cause substantial losses for commercial poultry producers (1), 2) these strains can contribute
genetic material to high-pathogenicity type A influenza virus (HPAI) (2), and 3) the H5 and H7
LPAI strains can mutate to HPAI with catastrophic effects in birds, and with the potential for
transmission to humans with lethal consequences (3). Kuiken et al. reported that an HPAI
(H7N7) isolate was observed in February 2003 in the Netherlands, which most likely originated
in free-living ducks and had evolved into a highly pathogenic variant after introduction into
poultry farms (4). Although subsequent serologic screening of poultry showed that the H7
influenza virus had been affecting the Dutch poultry industry several months before the major
epidemic, its presence had not been recognized (4). Our study addresses this problem by using a
novel method that causes chickens to seroconvert under conditions in which LPAI would
otherwise go undetected. This report shows that recombinant chicken interferon-α (rChIFN-α)
Page 2 of 8
(5) administered perorally in drinking water (6) acts as an adjuvant to produce a super-sentinel
chicken that is a sensitive and early detector of clinically inapparent LPAI.

http://www.cdc.gov/eid/content/13/10/pdfs/06-1552.pdf
 
Poultry Drinking Water Used for Avian Influenza Surveillance

Y.H. Connie Leung,* Li-Juan Zhang,* Chun-Kin Chow,* Chun-Lok Tsang,* Chi- Fung Ng,*
Chun-Kuen Wong,* Yi Guan,*1 J.S. Malik Peiris*1
*The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
1These authors contributed equally to this article.
Samples of drinking water from poultry cages, which can be collected conveniently and noninvasively,
provide higher rates of influenza (H9N2) virus isolation than do samples of fecal droppings. Studies to
confirm the usefulness of poultry drinking water for detecting influenza (H5N1) should be conducted in
disease-endemic areas.
Pandemic influenza originates from influenza viruses of birds (1). Live poultry markets
play a crucial role in maintenance, amplification, and dissemination of avian influenza viruses
(2–4) and are a risk factor for zoonotic transmission of highly pathogenic avian influenza
(H5N1) viruses to humans (5,6). Maintaining surveillance of live poultry markets for influenza
viruses is therefore important. In routine surveillance of live poultry markets, handling birds for
collecting tracheal or cloacal swabs is often unacceptable to the bird sellers. Because avian
influenza viruses were believed to be transmitted primarily by the oral–fecal route (7), fecal
droppings were therefore regarded as the noninvasive specimen of choice for surveillance
purposes (8). However, emerging evidence from experimental studies indicates that H9N2 (9)
and H5N1 (10) subtypes are shed in higher titers in the upper respiratory tract. We tested the
hypothesis that sampling drinking water is a convenient, noninvasive, and sensitive method for
conducting avian influenza surveillance in live poultry markets. Because vaccine-derived

http://www.cdc.gov/eid/content/13/9/pdfs/07-0517.pdf
 
Zuletzt bearbeitet von einem Moderator:
summary:
in Hongkong life poultry markets
H9N2 was in 7% of drinking water, but only in 1% of droppings
virus survived 50h in drinking water but only 10h
in fresh tap water or destilled water
 
Drinking water ist aber nicht gleichzusetzen mit "Trinkwasser" im Sinne von Soddemann.

Das Ergebnis ist lediglich ein Hinweis, dass Virus material kräftiger "oben" ausgeschieden wird, wie es für einige H5N1 Viren angegeben wird. Hierdurch werden die Näpfe kontaminiert, und das Virus bleibt darin für einige Zeit infektionsfähig.

Im Prinzip nur eine Bestätigung dessen, was vorher schon bekannt war. Es unterstreicht allerdings die Notwendigkeit, Trinkwasser und Futter unzugänglich für Wildvögel anzuordnen, da ggf eine Infektion via "drinking water" über Wildvögel eingeschleppt werden könnte.
 
http://www.dradio.de/dlf/sendungen/forschak/676136/


Flotter Biosensor
Nanoforscher aus Singapur entwickeln Schnelltest für Vogelgrippe
Von Ralf Krauter

Medizin. - Nach Meinung von Experten ist die nächste Vogelgrippe-Epidemie nur eine Frage der Zeit. Um in diesem Fall eine Ausbreitung zu minimieren, bedarf es einer frühen Erkennung des H5N1-Virus. Das könnten neue Biosensoren gewährleisten, die Wissenschaftler aus Singapur jetzt entwickelten.

Ein Leiterplatte, eine kleine Pumpe mit Schläuchen und eine Handvoll Chemikalien - das ist alles, was Jürgen Pipper vom Institut für Biotechnik und Nanotechnologie in Singapur braucht, um den Erreger der Vogelgrippe nachzuweisen: das Virus H5N1. Der Clou dabei: Der neuartige Sensor, den der Bioingenieur vom Institut für Nanotechnologie in Singapur entwickelt hat, kann die infektiösen Keime zehnmal rascher nachweisen als konkurrierende Schnelltests. Eine Art elektronisch gesteuertes Tropfenballett auf dem fingernagelgroßen Chip in der Mitte der Platine macht's möglich.

Alle Reaktionen finden auf dem Chip statt. Im Grunde sind sechs Tropfen vorgelegt. Der erste Tropfen enthält die Probe. Und dann werden einfach solange die Tropfen manipuliert, bis man eben beim letzten Schritt ist. Und der letzte Schritt ist eben PCR.

PCR steht für Polymerase-Kettenreaktion: ein hochgenaues Verfahren zum Nachweis verräterischer Erbgutschnipsel, bei dem winzige Mengen von Erbsubstanz in einer Flüssigkeit millionenfach kopiert werden. Bei der Vogelgrippe starten die Wissenschaftler mit etwas Hühnerkot oder - bei Menschen - mit einem Abstrich der Mundschleimhaut. Der gelösten Probe werden magnetische Nanopartikel beigemischt, die es erlauben, den zu untersuchenden Flüssigkeitstropfen mit elektrischen Strömen gezielt über die Chipoberfläche zu bugsieren. Nach und nach kommt er so in Kontakt mit den anderen Agenzien, die für den Nachweis des Virus-Erbguts nötig sind: Der mobile Flüssigkeitstropfen fungiert als Chemielabor. Mit Hilfe von Laserlicht lässt sich die Erbgut-Vervielfältigung darin live verfolgen. Nach spätestens eine halben Stunde liegt das Ergebnis vor.

Das Erste, was sie sehen, ist: Sie sehen eine Entscheidung ja oder nein. Also ist das, was sie suchen, da oder nicht. Und zweitens gibt's mir auch einen Rückschluss auf die Anzahl der Kopien, die ursprünglich vorlagen.

Und damit auf die Konzentration des Virus-Erbguts in der Probe, was wiederum ein Indiz für den Zeitpunkt der Ansteckung liefert. Der Tropfensensor ist zehnmal schneller und genauso empfindlich wie handelsübliche Vogelgrippe-Schnelltests. Auch die Adaption für den Nachweis anderer Keime sei kein Problem, sagt Jürgen Pipper.

Also wir haben einige Ergebnisse mit HIV und auch mit SARS.

Das enorme Tempo der Nachweisreaktion verdanken die Forscher ihrem Mut zur Miniaturisierung. Der Flüssigkeitstropfen für die Erbgut-Vervielfältigung auf dem Sensorchip fasst gerade mal 100 Nanoliter. Da der Tropfen im Zuge der groß angelegten genetischen Kopieraktion um die 40 Mal kontrolliert aufgeheizt und wieder abgekühlt werden muss, ist das ein entscheidender Vorteil.

Stellen sie sich vor: Sie heizen einen fünf Liter Spaghetti-Topf und brauchen wahrscheinlich zehn oder 15 Minuten auf ihrem Herd. Und jetzt gehen sie hin und nehmen einen ganz kleinen Tropfen Wasser und platzieren ihn auf der Herdplatte. Da werden sie sehen, dass innerhalb von ein paar Sekunden einfach der Tropfen verdampft. Und das ist der Effekt, den sie sehen, mit unterschiedlichen Volumina. Große Volumen, fünf Liter-Topf: Minuten. Kleine Volumina mit sehr kleinen Tropfen: Eine Sache von Sekunden.

Jürgen Pipper und seine Kollegen sind überzeugt, dass das filigrane Tropfenballett auf dem Sensorchip den Nachweis gefährlicher Keime aller Art revolutionieren könnte. Ein tragbares Analysegerät, das innerhalb einer halben Stunde verrät, ob ein Huhn oder ein Mensch mit dem Vogelgrippe-Erreger infiziert ist, wäre bei der Seuchenbekämpfung eine große Hilfe.

Die Vision, die wir haben, ist eben, dass das direkt am Ort gemacht wird. Vielleicht einfach nur am Bett im Krankenhaus, am Unfallort oder auch - was weiß ich - irgendwo in einem abgeschiedenen Dorf in Thailand, um einfach zu sehen, ob die Hühner noch gesund sind oder nicht.

Die Singapurer Forscher haben mehrere Patente auf ihren Tropfensensor angemeldet, verschiedene Firmen ihr Interesse bekundet. Um den preiswerten Schnelltest zur Marktreife zu entwickeln, werden aber sicher noch mal fünf Jahre ins Land gehen, schätzt Jürgen Pipper. Bleibt zu hoffen, dass die nächste Vogelgrippe-Epidemie nicht früher kommt.
 
summary:
in Hongkong life poultry markets
H9N2 was in 7% of drinking water, but only in 1% of droppings
virus survived 50h in drinking water but only 10h
in fresh tap water or destilled water

Besonders beruhignd ist das gerade nicht, entspricht aber meinen Thesen der Übertragung der lebensgefährlichen Vogelgrippe über das Tränk-/Trinkwasser. Erst die Enten - dann die Menschen!
 
Drinking water = Trinkwasser im Sinne von Soddemann

Drinking water ist aber nicht gleichzusetzen mit "Trinkwasser" im Sinne von Soddemann.

Das Ergebnis ist ein Hinweis, dass Virusmaterial kräftiger "oben" über Schnabel und Nase ausgeschieden werden kann, als es für einige H5N1-Viren häufig angegeben wird. Hierdurch werden die kleinen, an Tränkwasserleitungen angeschlossenen Tränknäpfe räumlich eng begrenzt kontaminiert und das Virus kann darin für einige Zeit infektionsfähig bleiben, - aber das Geflügel auch unmittelbar via Tränkwasser erreichen. In dem Fall infiziert sich das Geflügel direkt über das Tränkwasser und kann anschließend mehr Viren über den Schnabel als über Fäkalien ausscheiden.

Unterstrichen wird auch die Notwendigkeit, Trinkwasser und Futter unzugänglich für Wildvögel anzuordnen, da Infektionen via Trinkwasser über Wildvögel eingeschleppt werden. Diese Schutzanforderung muss für die Menschen und deren Trinkwasser gleichenmaßen gelten!

Unterstrichen wird auch die Notwendigkeit, den Trockenkot inkl. der verkoteten Einstreu als Sonderabfall zu verbrennen, damit die Infektionskette "Infektionen im Stall - Umwelt - Gewässer - Grundwasser - Tränk-/Trinkwasser" unterbrochen wird. - Wo passiert das? - Allein die 1.000.000 getöteten und unter Quarantäne stehen H5N1-Bayern-Enten der letzten Wochen produzieren im Jahr mindestens 28.000 m³ Trockenkot plus verkotetem Einstreu - das entspricht bei Transportkosten von 50 €/Container und Verbrennungskosten von 100 € je m³=Tonne und 3.500 8 m³ Containern für 1.000.000 Entenmastplätze [5.000.000 Enten/Jahr] mindestens 3 Mio. €/Jahr - also 0,6 €/Ente.

Drinking water ist meistens gleichzusetzen mit "Trinkwasser" im Sinne von "Soddemann".

Das Geflügel trinkt nicht aus einer gemeinsamen verkoteten Rinne oder einem verkoteten Trog, sondern aus an Tränkwasserleitungen angeschlossenen "Schnabeltassen".
 
Das Thema wurde ja schon anderswo ausführlich diskutiert. Ich möchte daher die Argumente nicht im einzelnen wiederholen.

Wichtig wäre schon, wenn sie einmal Ross und Reiter nennen würden und quantifizierbare Angaben machen würden, welche Konzentration lebensfähigen Virus' bei welcher Trinkwasserversorgungsart zu erwarten wäre.

Es wurde ja schon mehrfach thematisiert, dass die Größenordnung der notwendigen Infektionsdosis > 10 (0,8) EID angesiedelt werden muss.

In Bezug auf die erwähnte Infektion durch Tränken gehe ich davon aus, dass Tränkwasser längere Zeit im "Napf" verweilt und via Kot oder Pharyngealsekret ausgeschiedene und eingetragene Viren , bez auf einige dl Wasser, schon eine bedeutend höhere Konzentration infektionsfähigen Virus' bewirken als Virusmaterial, das sich - mit entsprechendem zeitlichen Abstand, erst einmal auf mio Liter TW verteilt, bevor es beim Verbraucher ankommt.

Zumindest wäre hier eine Modellrechnung hilfreich, wie sie Schijven, und Teunis*) angestellt haben.

Die Darstellung der anfallenden Mengen an Geflügelmist ist sehr eindrucksvoll. Hier wäre auch ein Ansatzpunkt für weitere kritische Überlegungen und Fragen an den BMELV und das FLI.

*) RIVM report 703719012
 
wie trinken Hühner eigentlich ? Kommt dabei Spucke (Pharyngealsekret)
ins Wasser ?
 
Thema: Biomonitoring, Surveillance, Summary

Ähnliche Themen

Neueste Beiträge

Zurück
Oben